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Abstract—This paper presents a first-order moduli-perturbation algorithm for fracture analysis of
nonhomogencous materials. The formulation is based on the Bueckner~Rice weight function theory.
In the perturbation procedure a homogeneous body is chosen as the reference so that non-
homogeneous quantities are treated as being perturbed from the reference solutions. Itis shown that
the perturbation formulae can be derived from the potential energy bounds for nonhomogeneous
materials, but they generally do not give bounds for estimating stress intensity factors. The per-
turbation algorithm is applied to calculate the stress intensity factors for several cruck problems
mvolving spatially varying material moduli. Comparisons with a few exact solutions indicate that
the perturbation results give reasonable predictions over a substantial range of moduli variation. The
solution for g cracked body with sinusoidally-varying shear modutus is obtained from perturbation
analysis and then used to construct general solutions for arbitranily-varying modulus via Fourier
analysis.

L INTRODUCTION

Nonhomogencous materials having clastic moduli that viry with position are cither present
naturally, or are used intentionally in engineering design to achieve a desired structural
performance. Soils, foundations, and geological structures are some examples of these
materials oceurring naturally while reinforeed composites are those being developed inten-
tionally for design purposes. Variations in the cffective moduli caused by service damages
such as impact and fatigue may also contribute to the nonhomogencity level of a given
material,

Understanding the {racture behavior of nonhomogencous materials with arbitrarily vary-
ing modulus is not only of interest for the technological advance of various types of
composite materials, but also for studies of carthquake faulting processes which often
involve zones of heterogeneous material propertics. However, it is generally very difficult
to carry out analytical studies for cracked, nonhomogencous bodies duc to mathematical
ditticulties. To derive solutions even for plane (2D) or axisymmetric crack problems, it has
been necessary to assume special functional forms for the material moduli (e.g. as expon-
ential functions of spatial coordinates ; see Dhaliwal and Singh, 1978 ; Delale and Erdogan,
1983). On the other hand, it is extremely costly to carry out finite clement or boundary
clement analyses, especially when the moduli vary rapidly at short spatial wavelengths.

The lack of an efficient tool in analyzing complex moduli variations justifies the present
development of a perturbation approach that allows one to study crack problems in
nonhomogencous materials with more ease. Recent progress in the 3D Bueckner-Rice
weight function theory makes it possible to formulate the perturbation algorithm in a
general 3D regime. By the unified perturbation procedure to be described in this paper, one
may determine the stress intensity factor along a crack front with arbitrary moduli variation,
without having to solve the exact boundary value problem. In that procedure a homo-
gencous body is chosen as the reference so that the nonhomogeneous body is viewed as
being perturbed from the reference body via slight perturbations in the material moduli.
Two first-order-cquivalent perturbation formulae are derived in terms of the 3D weight
functions for the reference homogeneous body. It is shown (Appendix) that the two for-
mulae are associated with the potential energy bounds for nonhomogencous materials, but
they generally do not provide bounds for estimating stress intensity factors. Comparison
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Fig. 1. A 3D planar crack configuration in an elastic body £ bounded by 72 the local coordinates
1.2, 3 along the crack front and the global tixed Cartesian coordinates x. v, .

with a few exact solutions indicates that the perturbation results are valid over a substantial
range of modult variation. Several nonhomogencous crack problems of interest are studied
for demonstration purposes. Perturbation solutions for cracked bodies with sinusoidatly-
varying shear modulus are used to construct general solutions via a simple Fourier transform
analysis.

2. GENERAL FORMULATION

First consider a body € of homogencous material bounded by a surtace ¢Q. The body
carrics a displacement ficld u(x) generated by some applied forces. Here x = (x, y, 2} is the
position vector; bold letters are used for vectors and tensors. The strain g,(x) and stress
a,,(x) are given in terms of the displacement field as

81; = é(“a,/ +H;.x)~ G:; = Ct}klck!‘ (t)
where commas denote differentiation, C,,, is the fourth-order elasticity tensor, and Latin
subscripts £, j, k, [, ... range over the Cartesian directions x, y, 2. The given elastic field is in
equilibrium with body force f(x) and boundary traction t(x), so that the equilibrium

equations read

0 in O

It

C:;kl“k.h +,/:l

n, C,',“Ukj =1, on Q. (2)

Here n is the outer normal along the boundary. The compliance moduli §,,,, may be defined
by

S,”,,IC’,,,,/./ = g((i,k()',,—{»-(s,,d,k) SO [hllt 5,/ = O k1Tl (3)

Assume that the body contains a 3D planar crack. For convenience, a set of local
coordinates (Fig. 1) has been adopted at an arc-length location s along the crack front CF.
The local axes 2 = 1.2, 3 arc taken to agree with the mode number designations for the
local stress intensity factors K, (s). so that the stress components at a small distance p ahead
of the crack tip have the asymptotic form
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Gy, ~ K,(s);’\/an. 4
Greek subscripts . f.7.... range over the local directions 1.2.3 in contrast to the Latin

subscripts i. j. k. ... which range over fixed Cartesian coordinates x. v, =. The energy release
rate. as energetic force conjugate to crack growth, is given by

G(s) = A KL (s)Ky(s). (5)
The matrix A,; is symmetric and for isotropic materials :

PSR o

0T 2u 2

where u. v are the shear modulus and Poisson’s ratio. respectively.

To analyze the crack problems, especially in the 3D regime, it is convenient to employ
the weight function theory developed by Bueckner (1970, 1973) and Rice (1972). Recent
progress in the development of 3D weight function theory has been reviewed by Rice
(1989). The weight functions h,. h;. h, are defined as three vector functions of position x
and an observation point s along the crack front: h, = h,(x; 5). The component &,,(x: s)
corresponds to the mode z stress intensity factor at s due to a unit point force in the j
direction at position x. Therefore, the stress intensity factors can be simply constructed as
the weighted average of the applied forces with b, icc.

K.(s) =J h,(x;.v)-f(x)(lb'+J
13}

h (x:s)-t(x)d. )
N
In (7) we have treated the surface forees t(x) as a Dirac singular layer of body forees along
the boundary. The weight function solutions for many 2D crack geometries are listed as
point force crack solutions in standard handbooks (c.g. Tadua er af.. 1985). The 3D
solutions for h, have been derived for circular cracks and hall-plane cracks in an unbounded
clastic medium (Bueckner, 1987; Gao, 1989a). Finite clement methods have also been
developed to compute the 2D and 3D weight functions (¢.g. Parks and Kamenetzky, 1979
Sham, 1987) for arbitrary geometry. When the applied forces are specified for a given
geometry, one may directly compute the stress intensity factors by the integrals given
in (7).
This paper is concerned with cracks in nonhomogencous materials. We let the elastic

moduli €, of the given homogencous body be perturbed (e.g. via some type of phase
trunsformation) to a spatially variable tensor

Cour(x) = Cipr+0C, (). (8)
The superposed tilde (7) will be used exclusively for quantities pertaining to a non-
homogencous body. The initial unperturbed homogencous body acts as a reference system
for the perturbed nonhomogencous body. [t will be shown that first-order perturbation
solutions can be simply constructed based on the reference solutions u,, o, €, K;.
In the nonhomogencous body, the equilibrium equation now reads
dg,.+/,=0 with ndé,=1¢ on Q, 9)

which may be recast into the following form by (8)

C.‘,klﬁk.h+ {[6Cukl(x)ﬁk.ll‘i +f/ } =0 in Q

n,C,,Hﬁk_[ = {1,—",6C,,kl(x)17k.,}‘ on éQ. (‘0)
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Comparing the above with eqns (2), 1t 15 clear that the elasticity problems in a non-
homogeneous body are equivalent to those in 4 homogeneous body subjected to an etfective
force field within the curly brackets in eyns (10). The force field now depends on the actual
elastic field 4 weighted by 6C, . Since @ is unknown until the given elasticity problem 1s
solved. this observation cannot be used to determine the exact solution of 4. However,
within the first order accuracy in 8C, ;. one may simply replace 4 by u in the etfective force
field and write

.f?rr = /1 + ((SC{;HUX,?)J » I«’Cﬁ' = !1 —H; (SC:/HHA‘.I' ( 1 l )

which are fully determined from the homogeneous solutions. Inserting {11) into eqn (7).

using the divergence theorem for the perturbation term in 5", which results in cancellation
of the boundary integral of the perturbation term in £, one finds that the stress intensity

factor for a nonhomogeneous body can be determined by
K5 = A’,(.?)-f OC (X, (Vg (X ) dV (12
{2

to the first order accuracy in 0C, ;. Therefore, Knowledge of the weight function fi(x: s)
for a cracked. homogencous body permits one to caleudate the first-order change in the
stress intensity factor due to arbitrary moduli perturbation 0C, {x).

An alternative first-order formula is obtained by noting that

a( okt T C ()‘Spqmn( ki = ( l[[hj()‘spc["l”( skl ( i 3)

riy
where >~ means equal to the first-order accuracy. Hence, within first order accuracy, egn
(12) is equivalent to

K (s) = K,(A‘)*{’*J 38, (XY Coppy @, (XM, (X 5) A (i

i1

The first-order perturbation formulae (12}, (14) can be also derived from the first-order
bounds tor the energy change associated with 8C, . The derivations are given in the
Appendix. Although it is interesting that the present perturbation formulae (12), (14) are
somewhat associated with the upper and lower potential energy bounds (Appendix), itis
found (Scction 4) that they do not provide bounds for estimating the stress intensity fuctors
in i nonhomogencous body.

A procedure using the moduli perturbution algorithm for fracture analysis in & non-
homogencous material is given as follows. Assume that the elastic moduli for a non-
homogencous body are given as a function C,,(x) of the spatial coordinates x = x, 1, .
One first chooses a reference body having the same geometry and forees but with a constant
moduli value C, ;. The actual body is then viewed as being perturbed from the reference
body by 8C, ,(x) = Cﬁ,;;;( x} = C, .- The stress intensity factors for a nonhomogencous body
are then given by (12) or (14). This perturbation procedure has been used, in a less general
sense, by Hutchinson (1987) to analyze a 2D crack with microcracking shiclding zones.

The same perturbation procedure applies for estimating the displacements and stresses,
stnce the material inhomogeneity can be represented by the cffective foree ficld of (11),
Following similar steps leading to the stress intensity formula (12), the displacement field
(r) can be written as

1, (x) = u,,,(x)-—j SC, 4w AN N, (NG e X X YA F(XT) {(15)
1

{

to first order in 8C, 4, where G,.(x. X"} denotes the displucement Green's function tensor
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for the homogeneous body. The stress and strain fields may be computed by differentiation.
This procedure was used in a scheme to determine the overall elastic moduli response of
composite materials by Willis (e.g. 1983).

In writing eqn (12) we have implicitly assumed that the volume integral involved exists,
at least in the sense of the Cauchy principal value if any singularity in the integrand occurs.
The singularity at the crack tip presents a potential problem. The volume integral would
be well defined if the singularity were weaker than p~* everywhere along the crack front,
p being the distance to the crack tip. For cracks in homogeneous materials, the displacement
gradient u,, ~ p~' 7 at the crack tip. and the 3D weight functions (Bueckner. 1973)
h,; ~ p~ 7 as the observation point s is approached. The resulting singularity in the inte-
grand is of order p~ . which is inadmissible. Hence. eqn (12) is strictly valid only for
perturbations that satisfy

5C,,k[(s) = lim (SCU“(‘) = 0. (l6)

X5
A general treatment of the inadmissible singularity in (12) can be taken as follows. For
any given f’,-,ka(x). one has the freedom to choose the reference moduli C, 4, so that condition
(16) can always be met, because the reference body is merely a virtual concept in the
perturbation scheme. We shall take the reference moduli G, to be equal to G (s). i.e. the
crack-tip valuc of f‘,,k,(x). so that

0C, (x) = 6;,:.-/(‘)“‘(‘:,&1 where C = Cxuu(f*')- (7

From now on, isotropic clastic behavior is assumed where

Lo Voo
C”“ = 2‘[[,’((),‘()”‘1"(),/(),/‘)+ | —‘7" (),,()“], ('8)

denotes the reference moduli tensor which, by eqn (17). is equal to the moduli value at the
crack tip. Following Guo (1989b), we use the following notation:

Z;CU,}, = (:;Hhxiﬁ 2:“ (S: U:; = {Cr;&!(x) - Cz;k!]kxk‘l(x s S), éi; = 2‘“::;' (l())

With these notations, the perturbation formula (12) can be written as
K.(s) = K,(s)-J- o.UN(x:8)d,(x)dV(x), (20)
43

which is now accurate to first order in C',,“(x) - C",M(x) for any f,,k,(x) that deviates slightly
from constancy. The homogencous crack solutions &,,, d;, can be found in standard books
for many crack geometrics (e.g. Tada ¢ of., 1985 Kanninen and Poplar, 1985). Similarly.
the alternative formula (14) can be written as

Ri(s) = K,(s)+j 8.4, (x: UL (x: ) AV (x), @
{1

where
0,4, = 2!‘[5'.-,1:(‘) =S wlou(x). (22)
It can be clearly seen that U7}, are the key quantities in carrying out the perturbation study.

For the convenience of further applications, we will present the weight function solutions
for h,, and U}, for a half-plane crack in the next section.
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Fig. 2. A half-plane crack in an infinite medium; the Cartesian coordinates v, y. - and the polar
coordinates p, ¢ at the crack tip.

3. THREE-DIMENSIONAL WEIGHT FUNCTIONS FOR A HALF-PLANE CRACK

Equations {20). (21) have displayed the key role of the weight functions in the moduli-
perturbation analysis. Some background will be provided before further applications are
made.

Consider a half-plane crack as shown in Fig. 2, with the crack front lying along the -
axis. The ¢rack plane occupics the half-planc y = 0, x < 0. Bueckner (1987) derived the
complete sct of weight functions &,; for the half-plane crack for all three crack modes
a = 1,2,3. In his work the weight functions are treated as fundamental ficlds with higher
singularities at crack tips and expressed in terms of a Papkovitch Neuber potential function

1 1 ¢+
Gy, pz=2) = — o=y dog | o0 ), 23
RIS T SR "*’(q-i) =
where
g = \/.{'+7ii(:' —;) q = \/3 Rc[\//A\‘-}-i_i'] = \,/"/2k) cos($h.2) (24)

and Re[F] and Im [F] denote the real and imaginary parts of the complex quantity F. The
polar variables p, ¢ are defined in the x, v plane as x+iy = pexp ip. We use complex
variable notation during the calculations so that the real parts of the final results are implied
for various real quantities such as the stress intensity fuctors. Let the functions £ and Q .
denote the derivatives of the potential G as

i iy ]
P=G,=— _ fj?}[(\.-é—u ) N
2Al—v) /270 Pile=)
Rel(x+iy '3
0 =G +iG, = o b RELXFD) 7] 25)

21 —v) /2t pile=2)

The function { docs not contribute a branch line to the potential function G. Hence G
involves only one possible branch line at x = y = 0, i.e. the crack front with the branch cut
along the crack faces. The real parts of the potential functions G, P, Q are all even functions
of =—=’, while the real parts of G ., G_... etc. are odd functions of - —-". This feature will
be used in Section 5 to simplify calculations for a half-crack in a medium with shear modulus
varying along the crack front.

The quantities U}, (x: =) were presented in terms of the above potential functions by
Gao (1989b). For mode | tensile cracks they are
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Ul,=P,—yP,. U, =—yP,,
U= —yP,.. UlL.=—-(1-29G,.—yP,..
U= =G o +2G_.—yP,. UL=—-G_.=-2vG —yP... (26)

Observe that U,,. U/,. U}, are all even functions of - —=’, since they only involve quantities
like G. P. Q. Also, U,, diverges in the order p~° * as the crack front is approached.

For shear modes, i.e. in-plane shear mode 2 and anti-plane shear mode 3. U}, are
written as

L’j’»"r = .‘.W';.y_r- U’n = - (l - V)gr.y + \'l/l.‘.._‘ +,"¢7.,n--

3
[

— (U= + V3
U = —(1=9)(g,: +h D)+, ..

U = =201 =g, =20, . + 3V, o

Ul = =2(1=v)h, . =2v,  + ¥, ... 27)
where 7 ranges over 2,3 corresponding to shear modes 2 and 3. The original expressions

for the shear potentials g,. &, ¥, in Bueckner (1987) are presented in a complicated form.
They have been simplified by Gao (1989b) to the following:

oL, VL. Vs = 2(1-1)G. +vQ
Y2 = 2—v T TS Ve T 2—v !
vl . 2(l=v)P—vL, 2(1-v)G,
gy = — 2_;" h" = — _.‘,__.,,.vi).:,.v__..,_.. . Ip.\ = — ,M--,Z _.\_’_ o (28)

where L = 2(yG,—xG,). Obscrve that the quantities U2, UL, U}, Ul. Ul are all
even functions of = —z'. They will play a role in the 3D analysis of a half-plane crack in
Section 5.

4. TWO-DIMENSIONAL CRACK ANALYSIS

We first apply the moduli perturbation formulae to 2D crack geometries. Of particular
interest here is a 2D semi-infinite crack lying in an infinite medium with its crack tip located
in an arbitrarily-shaped nonhomogencous zone, as shown in Fig. 3a. The material outside
the nonhomogeneous zone is assumed to be homogeneous with moduli CJ,. The remote
stress field is represented by the stress intensity factor K7 The stress intensity at the crack
tip is given by an unknown factor K3, to be determined. One may interpret Ky as the
apparent stress intensity factor and KU as the real stress intensity factor at the crack tip
shiclded by the nonhomogeneous zone. Here all the quantities are independent of the
variable = so that one may carry out the integration in the = direction in egns (20), (21) to
write

K‘;P K;)—J\ J\Ov 5(01‘11 61; 4 dl’ d¢ (29)

and

K

K'.’+J L 3.6, U7, p dp do, (30€)

where the polar coordinates p, ¢ are set up with origin at the crack tip. For each crack

SAS 27:13-E
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Fig. 3 {a) A semi-infinite crack serrounded by a nouhomogeneous zone. The stress intensity fuctor
at mfinity s A7 while the crack-tip stress intensity fuctor is K77 (hy Auxiliary problems A and
(o) B for constructing the solution o the prinmsary problem.

mode, the solution for d,; = 2ue,, can be extracted from the well-known crack fields (e.g.
Kanninen and Poplar, 1985).
The 21D quantities U3, may be derived by integrating the 313 solutions expressed in
(20). (27). In terms of the polar variables p, ¢ they are (Guo, 1989b)
O = (CRyp V[Tcos(3h/2) =3 cos(TPi)]:
Ol = {(C8)p " [cos (3p/2)+ 3 cos (T )]
Ul = (3C/8)p~ fsin (7/2) —sin 3$2)] 3

s

OL=U): UL=0l: O}=—=(C/8)p ' [Ssin(3p/2)+3sin(7/2)] (32)

UL=[1=v)C2lp " cos(3p/2); Tl = ~[(1-nC/2p ¥ sin(3h/2):  (33)

(the rest of the components U = 0), where C = 1 [2(1 = v){2r)"3]. The mode | results
(31) are in agreement with those used by Hutchinson (1987).

The integrands of eqns (29), (30) behave as p ~ ' when p ~ . This leads to logarithmic
singularity unless C)y; = C . which shows that the perturbation formuluc cannot be
dircetly used for the given primary problem shown in Fig. 3u. One may, however, construct
the solution to the primary problem via two auxiliary problems A and B shown in Figs
3b.c. Auxiliary problem A involves an infinite strip with a centered semi-infinite crack. A
simple encrgy argument or application of J-integral gives the exact solution

P (U =d, 00" o T=(1 =3,y
--~—~(~v;‘“; YK = T LRn? (34)

{no summation on x). Auxiliary problem B is immedintely solved using the first-order
formula (29) or (30). The solution to the primary problem is then constructed as
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K* (K3 (k¥
“ﬁ‘(ﬁlC?l (33)

where the first bracketed term on the right-hand side denotes the solution to auxiliary
problem A and the second bracketed term denotes the solution to B. Decomposition (35)
may be justified by considering the auxiliary problem B with a sufficiently large strip width
h. Letting R be the characteristic length of the nonhomogeneous zone R(f)). one may
identify the following three regions with different stress intensities: (i) region R>» p =0
with intensity factor K¥ ; (ii) region / » p » R with K7} : (iii) region p » s with K* Then
by an argument similar to that of the small-scale yielding in fracture mechanics, decompo-

sition (35) follows from the fact that
KD\ (Kr\ K ,
&) (F)=% )

(&)
Ko™

The approximation signs >~ can be made exact by having the strip width 4 (a virtual concept)
become infinitely large.

For most engineering and geological materials, Poisson’s ratio varies only slightly
(v = /4 ~ 1/3). If we neglect the variation in Poisson’s ratio, the solution to auxiliary
problem A is

KYK® = /u/n. (36)

Applying the perturbation formuta (29) to auxiliary problem B, and using (31)-(33) and
the well-known standard crack fields, it is messy but straightforward to derive the final
solutions to the primary problem of Fig. 3a as

ke fu [ [ A i L)
= - AEPITE X dp de
I\, I 2 Jo 14 Iy

et R’ (sp) sin ¢ + R() cos ¢ )
- fnj,um o dp). 37

where 7,(¢p) and J,(¢) are given by

I
I, = —————[l1 cos p+8cos 2¢p—3 cos 3 — 16v(cos Pp+cos 2¢)]
64(1 —v)n

I:= a0 =

) [15 cos ¢p—8 cos 2d+9 cos 3¢ — 16v(cos ¢ —cos 2¢)]

|
Iy = 4n cos ¢

J = ~——1;T)—7~t [S+4 cos ¢p—cos 2¢ —8v(l +cos ¢)]

¥y = e [Q = 2 —8v(l —cos
Js 32(1—\')7:[9 4cos P+ 3 cos 2 —8v(1 —cos ¢)]

|
L= 8
J 4n (38)
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Fig. 4. (a) A semi-infinite crack penetrating a circular inclusion with varying shear modulus ji{ p. ¢).
(b) Comparison of the perturbation results and the exact solution for @ mode 3 crack when i(p. ¢)
is constant.

It may be verified that £, (¢) and J,(¢) are related by
L($) = Ji(d)sin §+J,(h) cos ¢. (39

The above allow one to determine the stress intensity factor KiP for an arbitrarily-varying
shear modulus i = fi{p, ¢) within an arbitrary region p = R(¢) surrounding the crack tip.
The mode | part of the solutions in (37) (38) is consistent with a less general result given
by Hutchinson (1987), who treated the special case where the nonhomogencous zone is
symmetric with respect to the crack tip, i.e. where R(¢) is even in .

Similarly, application of the alternative perturbation formula (30) results in

I\“h \/ ( J‘ J*Ruln“(p 4)) —u 1, ((/)) »deb
-(’» i(p, (/’) p d

‘“0,”,“ jn 7.0 R (¢)sin p+ R(p) cos ¢
) » R(H)

d(b), (40)

which is obviously equivalent to (37) within first order.

Special case : circular nonhomogeneous region at a crack tip
If the nonhomogencous region is circular, t.e. R (¢) = R as shown in Fig. 4a, the
perturbation formulac simplify to

K(’m_\/ﬁ<l— "= “”"’)d d(b—--l—l;“ " J,(¢)cos¢d¢) (41)

- JO ,u { J "

and

KPP U ( [ (" i(p,d) —u L(¢) ~ ;e )
KTVl Tap.d) dé) (42
\/; Jon Jo fi(p. @) p dp dtk-’,(qﬁ)cosdy o] (42
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for arbitrarily-varying shear modulus fi(p. ¢) within the circle p = R.
For the special case of a mode 3 crack penetrating a circular inclusion with constant
shear modulus (p. ¢) = . an exact solution exists which is simply (e.g. Steif, 1987)

K/KS = 2p/(u+p"). (43)
In this case. both perturbation formulae (41), (42) predict
KP/KS = /u/’. (44)

A comparison between (43) and (44) via a plot in Fig. 4b shows that the first-order-accurate
perturbation solutions give reasonable results over a substantial range of difference in
moduli. Also. note that although the perturbation formulae are associated with potential
energy bounds of the nonhomogeneous body (Appendix). they do not provide bounds for
estimating the stress intensity factors. In principle, one may choose either one of (37). (40)
in application. In practical terms, it is often more convenient to use formula (40) when the
crack tip modulus p is substantially decreased from u" since (37) involves g in the denomi-
nator. which results in larger error than (40).

For mode 1 and mode 2 cracks penetrating a circular inclusion with constant modulus

i, it follows from (42) that
K4 \/“(l 1=2v -—;t)
K(l) - “0 8(‘1 —v) “o .

R It =2y —;t)
W= . 4
K} \/Il“ (I Ts-n 4

It may casily be verified that these results are consistent, within first-order accuruacy, with
the asymptotic results of Hutchinson (1987) and Wu (1988). Curiously, the present formulae
in the form of (45) are in close agreement with the modified formuliae devised by Hutchinson
[see eqn (A18) of Hutchinson, 1987] by fitting the exact numerical results. Hutchinson’s
results have been claimed to agree with the numerical analysis of Steif (1987) on cracks
penetrating a circular inclusion. We do not go into more detail here.

It is also interesting to observe that for a circular region with axisymmetric, radially
varying moduli ji = fi(p), the perturbation result K3 as calculated from (41) or (42)
depends only on the crack tip modulus y = i (0), because the integral term involving 1, ()
vanishes. This suggests that the profile of radially changing moduli within a circular
nonhomogencous region does not affect the crack-tip stress intensity factors. Hence, a
circular region with radially-varying moduli can be treated as an inclusion with constant
moduli, as observed by Steif (1987) from his numerical result for a mode 3 crack.

Sinusoidally-varying shear modulus

When cracks advance in a material with nonhomogencous material constants, the
crack-tip stress intensity factors change with position in response to the moduli variation.
Consider a crack in an infinite strip with height 2/ (Fig. 5a). Assume that the shear modulus
varies sinusoidally in the x direction as

2mx
fi=pu"+pu" cos = (46)

When the crack advances along the x axis. the crack tip is located at a position x = 4, as
shown in Fig. 5a. Substituting (46) into the gencral formula (40). taking R(¢) = hflsin ¢,
simplifying the integration with respect to ¢. and keeping only the first-order terms, one
finds that the stress intensity factor at the crack tip behaves as
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Fig. 5. (a) A crack in an infinite strip with sinusoidally-varying shear modulus. (b) Plot for ¢ (h/4)
(/7 = 1) that appears in the mode 3 crack solution,

A

: . 2n . 2na
KFIRD =1+ ;;}u [/.(/l/ﬂ-)cos '}ff +9g.(h/2) sin ;f]. (47

i) = 144 "I AP | .‘(27:11. )d
Sihii) =1+ seosa] T cot ¢ | [dep

“JAP) . (m
oo s

g, (hli) = 44[ 5 cot rﬁ)dqb. {48)

s COS (,b

The functions J,(¢) are those presented in (38). For long-wavelength modulus variations
when /2 « 1, it is custly seen that £, — |, g, — 0 so that

A 27{3
. - B 4
#Lip 9 __ MR e
KPIK, =1+ 2“0 Cos Fil (49)

The stress intensity factors are in phase with the shear modulus variation. This case is of
interest in studying crack behavior in a sandwiched layer with slowly changing moduli.

The other limiting case, #/A — o, is of more practical interest, that is, when the strip
height approaches infinity or equivalently the modulus wavelength approaches zero. It is
found that f,(h/2). g.(h/}) quickly approach their limiting values /,{=0), g,(0) once i/i
exceeds 0.5, indicating that the strip size does not play a role in the crack-tip stress intensity
factors once the wavelength of the shear modulus is smaller than twice the strip height.
Only for substantially long wavelengths /4 « 1 is K" sensitive to the strip size. We have
plotted the function g, (4/4) in Fig. 5b to demonstrate the behavior typical of f; and g,. The
limiting values /,(%). g.(x) arc found to be

REE: 1Y . | 3 -4y

/: C 9 =9 = T Si=g:=1 (50)

Sr=aasn ST

The above gives the crack behavior in an unbounded medium with sinusoidally-varying
modulus in terms of the homogeneous crack solution K. Therefore,
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Fig. 6. Solutions to the problem in Fig. S when A/4 — o : crick-tip stress intensity factors versus
the locul shear modulus protfile as a function of the crack tip position «.
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Here K7 is interpreted as the apparent stress intensity factor solution when the medium is
treated as being homogencous with shear modulus p’. We have plotted in Fig. 6 the
variations of KJ® with crack tip position along the x axis at v = a against the local modulus
variation profile. In Fig. 6, the valuc of p*/u” is taken as 0.5 while Poisson’s ratio is taken
as 0.25. Note that the stress intensity factor variation is not in phase with the modulus
variation, in contrast to the case when fif4 — 0 where K" are completely in phase with .
In the present case A2 — «, the mode | stress intensity factor suffers a phase shift of 26.6°,
while the shear cracks suffer a phase shift of 45, In the case of mixed mode cracking, the
relative amount of cach crack mode will be slightly affected by the shear modulus variation.
The perturbation amplitude of KU/KY duc to the modulus variation is largest for mode 1
cracks and smallest for mode 2 cracks.

The above result for the sinusoidal modulus variation can be used to construct genceral
solutions for arbitrary modulus variation in the x direction via Fourier transform analysis.
Let the shear modulus be written as

’.

a(x) = 1+ lj » a(w) cos (wx) + b(w) sin (wx) dw, (52)

where ;" is the reference modulus and a(w). h(w) are the Fourier cosine and sine transforms
defined by
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-

a(w) = J

x

[A(x)=u’)cos (wx)dx. b(w) = J A(x)sin (wx)dx. (53)

The reference modulus u° is chosen so that |a(w)|/u®, |b(w)]/u® « 1; it may, for example.
be simply chosen as the mean value of [(x).
The following integral result can be easily proved by Cauchy’s integral theorem:

x it
Ad e A ftd
PV dr = ntie™,

- X

where " P} denotes principal value in the Cauchy sense. so that

* ¢ ‘ “osin ot
P’f S W 4t = —nsin wd, Pl”'J 2 dr = cos wa. (54)

-y t—a < t—a

The perturbation solutions of (51). the integral representation (54) and the Fourier
expression (52) allow one to write the mode 1 stress intensity factor variation due to
arbitrary modulus fi(x) as

Kyr 3—4v ‘ .
' ( —«—l- 2 J- a(w) cos wa+ h(w) sin wa dw
[}

KT (o

.
, f a(w) cos wx+ h(w) sin wx dw
' 0

l
- .pVJ' e e dy
n e X—u
(3—4v) . | o)
= T 24 (a) =20 — N .
I+ $(1 Zv)a l: fi(a) =2 - PVJ“ i dl:l (55)

Hence, it is straightforward to construct the general solutions for all crack modes as

K (a) (3—-4v) - o | “ a)
K= I+ 81— v [Zu(a)—Zy —;PVJ._lT——_a dl]

K% (a) I . I [

il A — 2% —(3—4y) - et
I l+8(l-—v);z° [Zu(a) 20" —-(3 4l)nPVf.z t—ad’:}

K(a) _ Ly o ! “ ) <
KT 1+ 23 [u (a)—p° — - PVJi iTa dl:] (36)

for any modulus variation fi(x) in the direction x of crack propagation. The gencral
solutions of (56) may be directly derived from the perturbation formulae (37). (38), tuking
R(¢p) = h/|sin ¢|. We leave this to the interested readers for verification.

The casc is trivial when the shear modulus varies only in the direction perpendicular
to the crack plane, i.c. g = fi(3). Application of the perturbation formulae (37), (38)
immediately shows that '

KK =/ 1/ho.

Here u, and K represent the apparent values of the shear modulus and stress intensity
factors. while g and K" are the corresponding values at the crack tip. When gi(y) is an
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Fig. 7. A half-plane crack in a medium with sinusoidally-varying modulus along the crack front.

even function of v, i.e. when the modulus variation is symmetric about the crack plane, the
above perturbation solution becomes exact. as may be verified by a direct energy argument
or application of J-integral. However, for general, asymmetric modulus variation. an
apparently mode | loading at remote field may induce a mixed mode loading at the crack
tip. Such mode coupling. as suggested by our first-order perturbation result, must be of at
least second order in the modulus variation. It seems necessary to verify the perturbation
result for a generally varying modulus in the y direction via a numerical scheme, but we do
not pursue the details here.

S. THREE-DIMENSIONAL APPLICATION

By the unified perturbation procedure given in eqns (20). (21), the 3D crack problems
in nonhomogencous materials can be solved in the same manner as the 2D problems
discussed in the last section. For 3D application we consider a half-plance crack front along
the = axis (Fig. 7) with the shear modulus varying sinusoidally along the front as

Ve
Ji(z) = 1" + 1" cos -2[-'. (57)

The present problem is of interest for the study of earthquake faulting processes that involve
heterogencous zones with varying shear modulus along the fault trace.

To solve the above problem, we first consider the strip-crack problem shown in Fig.
Sa with the shear modulus now varying in the = direction. The solution to the original
problem in Fig. 7 is obtained by letting the strip height & approach infinity. Note that the
stress intensity factors KiP = KiP(z') vary along the crack front with the observation
position =’. One may use the perturbation formula (21) to determine K¥°(2’) in terms of
the apparent stress intensity factor K at infinity.

The strip problem is solved in the same manner as in deriving (37), (38) for the 2D
applications. In the 3D analysis the reference modulus p = fi(z") also varies with the
obscrvation point =", [t can be shown that

e e n B | s bl [ TR 1
Ky() = Jﬁ(:')/;t"(l\’;’ —j J‘ f ‘f.(..‘)‘.l_t“(_:) é, Unp dz dp d‘b) (58)

where 6,, = d,,(p, ¢) may be extracted from the well-known crack tip stress fields. Sub-
stituting (57) into (58). and observing that the relevant components of U (e.g. U}, U,,.
U!,) arc all even functions of (z—:z'). one may show that the solution to the strip-crack
problem can be written as

A Voot
. i 2z
G TIRAYE I
KWK, =1+ —_,#,,m, cos( 3 > (59)
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where
El L3 2rhoa s x
plhA) = { — KQ,J\ J- J‘ (cos I~ Dd (p. HUS. 0.5y dZdide.  (60)
FECA ] - %X

In writing eqn (60), we have made the variable transformations 2n(z —z') 4 = 3, 2np/i =
and used the properties that ¢, U}, is a homogeneous function in p, - — =" of degree — 3. The
functions m, = m, (h;£) can be then computed from the 3D weight function solutions given
in (26)—(28). The integral in (60} has a finite limit when #/4 — . which leads to the solution
to the 3D nonhomogeneous crack problem of Fig. 7,

4 T x i«
m, = I‘K“j J J (cos 2= 1)d,(p. )YUL(P. d.5)p dZ dj dop. (61)
x J 8 o -

The above limiting values of m, depend only on Poisson’s ratio v, which is in fact obvious
from a simple dimensional analysis. Numerical integration may be carried out to compute
m, once v is given. Our computation for the case v = 0.25 indicates that

my= 180, my, =201, mo= 123 (62)

for an arbitrarily-varying modulus in the = direction, i.e. ji = fi(z). Using a Fourier trans-
form analysis similar to that in Section 4 leads to the following general formula to caleulate
the stress intensity factors

h
K= )RY = 1+ ,,l'l:,'[,z(:')a,e"L (63)

where g% is simply the mean value of g,

[tis interesting to note from (63) that the crack-tip stress intensity tactors Ky (27) only
depend on the local modulus at the observation point 27, This suggests that a slight change
of moduli such as second-phase inclusions along the crack front will only have very localized
ellects on the stress intensity factors.

6. DISCUSSION

We have presented a unified moduli-perturbation procedure for determining the first-
order-accurate solutions for cracks in a4 nonhomogencous medium. Recent developments in
the Bucckner -Rice weight function theory in the 3D regime have permitted us to compute
the stress intensity factors along a 3D crack front via the perturbation method. without
having to solve the complicated boundary value problem. It is shown that although the
perturbation formulac are associated with the potential energy bounds of nonhomogeneous
malterials, they generally do not give bounds for estimiting the stress intensity factors,
Applications have been made to study semi-infinite crack problems in both 2D and 3D
configurations. Comparisons with a few exact solutions available have indicated that the
perturbation results arc valid over a substantial range of moduli variation.

The present perturbation algorithm can be extended to study many other problems in
nonhomogeneous materials. Some of them are listed below.

(a) For reinforced composites, one can use the perturbation algorithm to calculate the
interaction between the microcracks in the matrix with second phase fibers or inclusions.
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(b) For the analysis of crack growth in composite materials, one can use the per-
turbation procedure to compute the effects of inclusions or fibers on a major macroscopic
crack. For example. it is of interest to study the influence zone of an inclusion within which
a crack tip is sufficiently deflected toward the inclusion to cause the so called “crack
trapping™ process. In the trapping process the crack front advance is blocked, at least
temporarily, by a tough inclusion particle. This has been identified as a toughening mech-
anism for reinforced composites.

{c) Of geological interest, one model for stressing along fault zones involves a slipping
shear crack front at the seismogenic zone penetrating upward from depth to cause major
earthquakes along tectonic plate boundaries. The geological faults often involve non-
homogeneous zones both along the fault trace and depthwise toward lower portions of the
mantle. The perturbation method may open a new channel to study these complex geological
problems.

(d) The perturbation method can be also used to assess dislocation interactions with
inclusions or arbitrary nonhomogeneous materials. Barnett (1972) has studied a screw
dislocation in a nonhomogeneous material with a smoothly varying shear modulus. Gen-
erally speaking. very little analytical work is available in this area. The perturbation algo-
rithm may be extended. in the spirit of eqn (15) of the text, to address more complicated
issues such as arbitrary dislocation loops interacting with arbitrarily-varying moduli.

It is equally important to note the limitations of the first-order perturbations algorithm:

(a) The perturbation procedure in its present form may not be applicable when the
crack front intersects an interface between dissimilar materials, in that an interfacial crack
tip generally tnvolves stress singularitics different from that of homogencous cracks, thus
leading to singular perturbations. This problem, however, may be overcome by changing
the reference solutions from those of a homogencous crack to those of un interfuce crack
with sufficiently simple moduli variation. As an cxample, supposc that one wishes to analyze
acrack lying along an interface between two drastically dissimilar materials, with the further
complication that both materials are weakly nonhomogencous, Obviously one cannot use
a homogencous body as the reference for perturbation, but it is possible to choose the
reference as an interface crack between two materials cach having a constant modulus, The
philosophy at play here can be summarized as: choose a proper reference body (not
necessarily homogencous) so that the imposed perturbation does not ““perturb’™ the nature
of the stress singularity at the crack front location of interest.

{b) For cases where there are drastic variations in material moduli, the first-order-
accurate perturbation procedure might cause significant error in estimating the stress
intensity factors. In principle, one may construct a multi-step perturbation procedure, in
the spirit of the incremental crack front perturbation procedure outlined in Rice (1989). to
form a procedure in which the weight function field and the full displacement field are all
updated by (12). (15) at each perturbation increment. However, in view of the heavy
computations that would be involved in this foreseen procedure, it seems that a more
efficient finite clement procedure can be devised. The author suspects that the basic concept
underneath the present perturbation procedure, namely, representing the material non-
homogencity by an effective foree tield [see eqns (10), (11)} can be used to devise a finite
clement procedure in which the nonhomogenceous cracked body is treated as 4 homogencous
one with a crack interacting with clfective body forees and surface tractions.
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APPENDIX: PERTURBATION FORMULAE V8 ENERGY BOUNDS
For a stressed, homogencous body €2, the potential energy and the complementary energy are given by

- .

|
) = ‘J (C sttt = iy d b —J tou, dA
1 o83

~

0 r
Wia) = ,J S,,“n;,rr“d!'—J wn,a,, dA (A}
- Jii li“’

Here ¢Q,, 062, are the respective portions along the boundary where the tructions or displacements itre prescribed.
It u, and a,, are true solutions to the elasticity problem,

D{u) +W(a) = 0. (A2)

The same cxpressions may be applied to 4 nonhomogencous body if all the quantitics are superposed with a tilde.

The following energy bound theorem will be used. When a homogencous body is perturbed to 4 non-
homogeneous one by changing its moduli by 6C, ,,(x). the change in the potential energy will be bounded by (¢.g.
Walpole, 1970)

ST < 5B g S, {A)
where
. e .
ahr = SC, . (X)X ((x)d } (A4
~ J1}
and
. ty . .
AP =~ o ] aS, L) (X (x) {AS)
- Ju

[tis important to note that S0* and od** are fully determined by the unperturbed, homogencous solutions. The
above energy bound theorem leads to Hill's (1963) “strengthening theorem™ which states that the potential energy
always tncreases when a material is doped with stiffer inclusions, i.e. when JC,,, (~85,4,) is positive definite.
Equally. this also leads to a “weakening theorem’™ that the energy always decreases when a material is doped with
softer inclusion particles, in which case 8C ., ( —835..4,) is negative definite.

The cnergy bound theorem (A3 can be proved as follows. From the governing cquations (1), (2) in the text
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for the homogencous solutions (u.. ¢,,. 5,] and (9) for the nonhomogeneous field {d.. £,. 6,]. one may conclude
that [u,. ¢, .. 5,,“»:‘,] forms a kinematically admissible solution set for the nonhomogencous body since all the
kinematic conditions are met. On the other hand. the set {a,,. §,.,0.] is only statically admissible since it satisties
the equilibrium but not the compatibility equations. It follows from the classical minimum energy principles that

~%io) € ~P5) = @) < by (A6)
However, it is rather straightforward to show that
Gu) = Gy + v, Pla) = D(u) +I0**. (AT)

Combining eqns (A6) and (A7), one reaches the conclusion that

Sb** < 00 = (i) - Blu) < 00, (A8)

which completes the proof of the energy bound theorem (A3).

Furthermore. it is elementary to show that d®* is equal to dd** within first order in 6C, ;. Thus, d®*, sd**
also give the first-order variation in the total potential energy associated with the moduli perturbation 5C,,/(x).
Without realizing the energy bound theorem (A3). Eshelby (1970) proved the same result via a different approach.
According to Eshelby, an analogous result referred to as the Hellman-Feynman theorem also exists in the theory
of quantum physics. The present first-order bound theorem has significance in estimating potential energy changes
due to phase transformations. We do not pursue the details of that aspect here.

Now assume that the body contains a 3D planar crack. When the crack front CF is perturbed from its
original position to a neighboring position by an amount da(s) normal to itself in the crack planc, where da(s) is
an arbitrary function of the crack front position s. the poteatial energy is changed by

¥

o = _J §(5) du(s) ds, (A9)
-

where %(s) is the local energy release rate [see eqn (5) of the text]. Therefore, when a homogeneous body is
imposed with infinitesimal perturbations da(s) and 6C,,,(x), the total energy change is dB* + 0. Writing

Sa(s) = g(s) du,  0C, 4y(x) = p, () 3C (A10)

to identify the perturbation magnitudes da, 3C under fixed profile functions g(s) and p,,,(x), the total energy
change is expressed as

b = —Gdu~-F*oC (ALD)
where
G = J‘ ALK (5K (5)g(s) ds (A1)
¥
und
. !
F* = — ;J Poad X, (X (x)dV. (AL3)
- JQ

The coctlicients 7, #* measure the rates at which the total potential energy varies with the perturbitions da, oC,
corresponding to the thermodynamic forees conjugate to the crack advance [with profile g()] und the moduli
change {proportional to p, ., (x)].

The potential encrgy D) depends only on the tinal elastic state which is a function of variables such as the
final crack position and the tinal moduli function €, it should be independent of the path taken by the
perturbation process. Therefore the right-hand side of eqn (A1) is a perfect ditferential so that the coeflicients G
and F* must satisfy the Maxwell reciprocal relation

oG _ CF* (A4
hle - Sa )
which by (A12), (A13) leads to
oKy gy o,
2 Ve == g(s)ds = 3 ——=dV.
J.”_ A'ﬂA1 C g(s)ds J;I’uu(‘)"w i d (ALS)

At this stage it is necessary to use an important property of the 3D weight functions h,,(x: 5). Rice (1985) has
shown that, when the crack front CF is perturbed by da(s) = g(5)da. the displacement u varies under fixed loading
conditions according to

)

= ZJ Ahu (X 5)Ka(5)g(s) ds. (A16)
CF

&8
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Substituting (A[6) 1nto (Al35) results in

K |
J' A,‘,K,{s){(—_-——t +J P, (O, (X s)dl’(x)}q(x)ds =0. (A17)
CF cC 0 )

Equation (A7) must be valid for an arbitrary crack perturbation profile function g(s). which requires that the
integrand part within the curly brackets vanishes. 1e.

= _-'; = —f P (X0, (XD, (% 5)d F(x). (AL8)
4]

This equation, when multiplied by dC and replacing p..,(x)3C by 6C,,,(x). leads to the rederivation of eqn (12)
of the text. It is then clear that egn (12) is derived from the upper bound o®* tor the energy change due to 6C, .

Similarly, if one uses ob** instead of 3* in constructing the reciprocal relation (A14) (i.e. £* is replaced
by £**). one can follow similar steps leading to eqn (A18) to rederive eqn (14) of the text. Therefore, the
perturbation formulae (12), (14) are in fact associated with the upper and lower first-order bounds for the potential
energy change. However, these perturbation formulae do not provide bounds for estimating the stress intensity
factors, as shown in Section 4 of the text.



