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Abstract-This paper presents ~l first-order moduli-perturbation algorithm for fracture analysis of
nonhtlmtlgeneous materi'lls. The formulation is based on the Bucekner-Riee weight function theory.
In the perturbation procedure a homogeneous body is chosl:n as the reference so that non­
htlmogeneous quantities arc tre~lted as being perturbed from the reference solutions. It is shown that
the perturbation formulae can be derived from the potential energy bounds for nonhomogeneous
materials. but they gener.IIly do not give bounds for estimating stress intensity factors. The per­
turbation alg('rithm is 'lpplied to calculate the stress intensity factors for several crack problems
inv"lvmg spatially varying material moduli. Comparisons with .. few e~acl solutions indicate that
the perturbatil,n results give reasllllable predictillOs over a substantial range of moduli vari..tion. The
s"lutillll for .. ..:racked body with sinusoidally-varying shear nHldulus is obtained from perturbation
analysis and then used t(, e'lIIstrucl gem:ral solutions for arbitrarily·varying nHldulus "ia Fourier
analysis.

l. INTRODUCTION

Nonhomogeneous materials having elastic moduli that vary with position arc either present
naturally. or arc used intentionally in engineering design to achieve a desired struetuml
performance. Soils. foundations. and geological structures arc some examples of these
materials occurring "'tturally while reinforced composites arc those being developed inten­
tionally for design purposes. Variations in the efli:ctive moduli caused by service damages
such as impact and fatigue m,ty also contribute to the nonhomogeneity level of a given
material.

Understanding the fracture behavior of nonhomogeneous materials with arbitrarily vary­
ing modulus is not only of interest for thl: technological adv~lllce of various types of
composite matl:rials. but also for studies of earthqu~lke I~tulting processes which often
involve zonl:s of hetl:rogeneous matl:rial properties. However. it is generally very dillicult
to carry out analytical studies for cracked. nonhomogeneous bodil:s due to mathematical
dilliculties. To derive solutions even for plane (20) or ,lxisymmetric cr~tck problems. it has
been necessary to assume special functional forms for the material moduli (I:.g. as expon­
enti,t1 functions of spatial coordinates; see Dhaliwal and Singh. Ins; Delale and Erdogan.
19SJ). On the other hand. it is extremely costly to carry out linite element or boundary
clement analyses. especially when the moduli V,try rapidly at short spatial wavelengths.

The lack of an emdent tool in ,lllalyzing complex moduli variations justilies the present
development of a perturbation upproach that allows one to study cruck problems in
nonhomogeneous materials with more case. Recent progress in the 3D Bueckner-Rice
weight function thl:ory makes it possible to formulate the perturbation algorithm in a
general 3D regime. By the unified perturbation procedure to bl: described in this paper, one
may detl:rmine the stress intensity factor along a crack front with arbitrary moduli variation.
without h<tving to solve the exact boundary value problem. In that procedure a homo­
geneous body is chosen as the reference so that the nonhomogeneous body is viewed as
being perturbed from the reference body via slight perturbations in the material moduli.
Two lirst-order-equivalent perturbation formulae arc derived in terms of the 3D weight
functions for the reference homogeneous body. It is shown (Appendix) that the two for­
mulae are associated with the potential energy bounds for nonhomogeneous materials. but
they generally do not provide bounds for estimating stress intensity factors. Comparison
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Fig. I. A 3D planar cral'k conligumtion in an clastic body n bounded ny /'n: the It'cal coordinates
I. ~. 3 along the crack front and the gll,bal li~ed Cartesi:1l1 coordinates x. r.:.

with a few exact solutions indicates that the perturbation results arc valid over a substantial
range of lll\lduli variation. Severainollholllogeneous crack problems of interest arc studied
for demonstration purposes. Perturbation solutions for cracked bodics with sinusoidally­
varying she:tr modulus arc used to construct general solutions via a simple Fourier transform
analysis.

~. GENERAL f'()RMULATION

First consider a hody 0 of homogeneous material bounded by a surface 1'0. The body
carries a displ:H:ement field tI(x) gel1cf<lted by somc applied forces. Here x = (x, .1',:) is the
position vector; bold ktters arc used for vcctors and tensors. The strain f:,/(X) and stress
C1,/( x) arc given in tcrms of thc displacement field as

(I)

where commas denote differentiation, C'ikl is the fourth-order elasticity tensor, and Latin
subscripts i, j, k, I, ... range over the Cartesian directions x, y,:. The given elastic field is in
equilibrium with body force f(x) and boundary traction t(x), so that the equilibrium
equations read

C"kI/lk,l( +h = 0 in 0

II, Ci/klllk./ = I, on to. (2)

Here n is the outer normal along the boundary. The compliance moduli S"kl may be delined
by

(3)

Assume that the body contuins a 3D planar crack. For convenience, a set of local
coordinutes (Fig. I) has been udopted at an arc-length locution of along the crack front CF.
The 10c.1I uxes :x = 1,2,3 ure Luken lo ugree wilh the mode number designations for the
local stress intensity factors K,(s), so that the stress components at a small distance p ahead
of the crack tip have the usymptotic form
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(4)

Greek subscripts x, p, ,', ... range over the local directions 1.2,3 in contrast to the Latin
subscripts i. j. k . ... which range over fixed Cartesian coordinates x. y. =. The energy release
rate. as energetic force conjugate to crack growth. is given by

The matrix A'd is symmetric and for isotropic materials:

(I-\' I-\' I)
A'd = diag -~-. -.,-. ~ .

-11 -11 -11

(5)

(6)

where 11. \' are the shear modulus and Poisson's ratio. respectively.
To analyze the crack problems. especially in the 3D regime. it is convenient to employ

the weight function theory developed by Bueckner (1970. 1973) and Rice (1972). Recent
progress in the development of 3D weight function theory has been reviewed by Rice
(1989). The weight functions hi' h~, h, are defined as three vector functions of position x
and an observation point s along the crack front: h, = h,(x ; s). The component IzIJ(x; s)

corresponds to the mode x stress intensity factor at s due to a unit point force in the j
direction at position x. Therefore. the stress intensity factors can be simply constructed as
the weighted average of the applied forccs with h" i.e.

I\,(S) = rh,(X;S)'f(X)dV+f hr(x;s)·t(x)d:l.Ju ..n (7)

(n (7) we have treated the surface fon.:es t(x) as a Dirac singular layer of body forces along
the boundary. The weight function solutions for many 2D crack geometries arc listed as
point force crack solutions in standard handbooks (e.g. Tada cl al.. (lJH5). The 3D

solutions for h, have been derived for circular cracks and half-plane cracks in an unbounded
clastic medium (Bueckner, 1987; Gao, 1989a). Finite clement methods have also been
developed to compute the 2D amI 3D weight functions (e.g. Parks and Kamenetzky, 1979;
Sham. 1987) for arbitrary geometry. When the applied forces arc specified for a given
geometry. one may directly compute the stress intensity factors by the integrals given
in (7).

This paper is concerned with cracks in nonhomogeneous materials. We let the elastic
moduli e'l" of the given homogeneous body be perturbed (e.g. via some type of phase
transformation) to a spatially variable tensor

(8)

The superposed tilde () will be used exclusively for quantities pertall1l11g to a non­
homogeneous body. The initial unperturbed homogeneous body acts as a reference system
for the perturbed nonhomogeneous body. It will be shown that first-order perturbation
solutions can be simply constructed based on the reference solutions tI" (T'I' fo", KI •

(n the nonhomogeneous body, the equilibrium equation now reads

ii"., +.t; = 0 with fl,ii" = I, on ('n,

which may be recast into the following form by (8)

C;/k/IiU, + {[e5C';k/(X)lik.Jl.i +jj} = 0 111 n
fl iCi,k,lik., = {Ii - fl,e5C"k,(X)lik.,J· on en.

(9)

(10)
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Comparing th~ abov~ with eqns (2). it is clear that th~ elasticity probl~ms in a non­
homogeneous body are equivalent to those in a homogeneous body subj~cted to an etfective
force field within the curly brackets in eqns ( 10). The force field now depends on the actual
elastic field uweight~d by SCI/kl' Since u is unknown until the given elasticity problem is
solved, this observation cannot be used to determine the exact solution of U, However.
within the first order accural.:Y in {jC IIA/ , ont: may simply replace Ii by u in tht: dft.'~:tive force
field and writ\.'

(1\ )

which are fully determined from the homogeneous solutions, Inserting (II) into eqn (7),
using the divergence theorem for the perturbation term injj'T. which results in cancellation
of the boundary integral of the perturbation term in ti lf

, one Hnds that the stress intensity
factor for a nonhomogeneous body can be determined by

( 12)

to the lirst order accuracy in iiC"J;f' Therefore. knowledge of the weight function h,,,(x; s)

for a cra\."ked. homogeneous body permits one to \'"'Ikulate the lirst-order change in the
stress intensity fa\."tor due to arbitrary moduli perturbation ('jCl/kl(X).

An alternative lirst-order fiJrmula is obtained by noting that

( 13)

where ~ means equal to the first-order accuracy, lienee. within lirst order aeCUf;u.:y. eqn
(12) is equivalent to

( 14)

The first-order perturhation formulae (12), (14) can be also derived from the lirst-order
hounds for the energy change associ.tted with ()C'/J;f' The derivations arc given in the
Appendix, Although it is interesting that the present perturbation formulae (12). (14) arc
somewhat assO\:iated with the upper and lower potential energy bounds (Appendix). it is
found (Section 4) that they do not provide bounds for estimating the stress intensity factors
in a nonhomogeneous body,

A procedure using the moduli perturbation algorithm for fracture analysis in a non­
homogenellUs material is given as follows. Assume that the elastic moduli for a non­
homogeneous body are given as a fUI1\.:tion ("'Ik/(X) of the spatial coon.linalcs x = .\', y. =.
One first chooses a reference body having the same geometry and forces but with a constant
moduli value e"l.l' The actual hody is then viewed as being perturbed from the relcrence
body by {'jC,k/(x) -= e,lk/(X) - CI,I' The stress intensity factors for a nonhomogeneous body
are then given by (12) or (14), This perturbation procedure has been used, in a less general
sense, hy Hutchinson (19X7) to analyze a ~() crack with mierocracking shielding zones,

The same perturbation procedure applies for estimating the displacements and stresses,
since the material inhomogeneity can be represented by the clTective force field of (II),
Following similar steps leading to the stress intensity formula (12), the displacement field
u(r) can be written as

ii.,,(x) = II",(X) (M'"J.I(X')lI,./(X')G""Ax,x')dV(X')
Ju

(15)

to lirst order in (5Cl/kl. where Gm,(x. x') denotes the displacement Green's function tensor
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for the homogeneous body. The stress and strain fields may be computed by differentiation.
This procedure was used in a scheme to determine the overall elastic moduli response of
composite materials by Willis (e.g. 1983).

In writing eqn (12) we have implicitly assumed that the volume integral involved exists.
at least in the sense of the Cauchy principal value if any singularity in the integrand occurs.
The singularity at the crack tip presents a potential problem. The volume integral would
be well defined if the singularity were weaker than p - 3 everywhere along the crack front.
p being the distance to the crack tip. For cracks in homogeneous materials. the displacement
gradient tI,.1 - P- 1 C at the crack tip. and the 3D weight functions (Bueckner. 1973)
hXI - P- 3 C as the observation point s is approached. The resulting singularity in the inte­
grand is of order P- 3. which is inadmissible. Hence. eqn (11) is strictly valid only for
perturbations that satisfy

bC'f/.As) = lim JC'lk/(X) = O.
... -J

(16)

A general treatment of the inadmissible singularity in (12) can be taken as follows. For
any given Cilk/(X). one has the freedom to choose the reference moduli CI/kl so that condition
(16) can always be met. because the reference body is merely a virtual concept in the
perturb'ltion scheme. We shall take the reference moduli C'ikl to be equal to Cijk/(S). i.e. the
crack-tip value of C'lk/(X), so that

( 17)

From now on. isotf(lpic clastic behavior is assumed where

(I ~)

denotes the rclcrence moduli tensor which. by eqn (17). is equal to the moduli value at the
crack tip. Following Gao (191Nb). we use the following notation:

With these notations. the perturbation formula (12) can be written as

Kx(s) = K,(s)- r (5,U~/(x;s)a'/(x)dV(x).Ju
(20)

which is now accurate to first order in ("Ik/(X) - ("Ikl('» for any ("I"k/(X) that deviates slightly
from const.mcy. The homogeneous crack solutions t:,l • ail can be found in standard books
for many crack geometries (e.g. Tada el €II., 1985; Kanninen and Poplar, 1985). Similarly.
the alternative formula (14) can be written as

(21 )

where

(22)

It can be clearly seen that U~ are the key quantities in carrying out the perturbation study.
For the convenience of further applications. we will present the weight function solutions
for "XI and U~i for a half..pl<mc crack in the next section.
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Fig. 2. A half-plane crack in an infinite medium; the Cartesian coordinates x. y. =and the polar

coordinates P. <p at the erack tip.

J. THREE·DlMENSIONAL WEIGHT FUNCTIONS FOR A HALF-PLANE CRACK

Equations (20). (21) have displayed the key role of the weight functions in the moduli­
perturbation 'lnalysis. Some background will be provided before further applications are
made.

Consider a half-plane crack as shown in Fig. 2. with thc crack front lying along the:
axis. The crack plane occupies the half-plane y == O. x < O. Bueckner (19R7) derived the
complete set of weight functions Jr" for the half-plane crack for all three crack modes
(X = 1.2.3. In his work the weight functions are treated as fundamental fields with higher
singularities at cmck tips and expressed in terms ofa Papkovitch -Ncuoer potential function

where

. , I I ('1+~)(r(x. v.;-; ) = ---' - _'_-\' -,. log ~.
. 4(1-~·)1t·c, "-I" (23)

(24)

and Re [FJ and 1m [FJ denote the real and imaginary parts of the complex quantity F. The
polar variables I'. (P arc defined in the x.y plane as x+iy == IH:Xpilp. We usc complex
variable notation during the calculations so that the real parts of the final results arc implied
for various real quantities such as the stress intensity l~lctors. Lct the functions P and Q
denote the derivatives of the potential Gas

I 1m [(x+ir) 11]
P = G f = - _ .._----=:: _ .. _--; .._.:....,'.

. 2(I-v)",12n:3 p-l(;-;)

I Re[(x+il') I ~l
Q = G + iG . = ..-- .. "-- -

., .. 2(1-~')J21t\ p-i(:-:')
(25)

The function, does not contribute a branch line to the potcntial function G. Hence G
involves only one possible branch line at x = y = O. i.e. the crack front with the branch cut
along the crack faces. The real parts of the potential functions G. P. Q are all even functions
of: - ;'. while the real parts of G.:. G.:::. etc. are odd functions of; - ;'. This feature will
be used in Section 5 to simplify calculations for a half-crack in a medium with shear modulus
varying along the crack front.

The quantities U:.nex; ;') were presented in terms of the above potential functions by
Gao (1989b). For mode I tensile cracks they are
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(r,I,. = p.,. - yP....... V I - _}'p
y.l - ...·X'

[',1= = _yp.•=. U:= = -(1-2v)G.t =-yp.t =.

U:.t = -G.t .t +2vG.==-yp..tt • U~= = -G.==-2vG..u-YP.==' (26)

Observe that U: t • U ,'.. U ,It are all even functions of: -:'. since they only involve quantities
like G. P. Q. Also. U~n diverges in the order p' 5 ~ as the crack front is approached.

For shear modes. i.e. in-plane shear mode 2 and anti-plane shear mode 3. U~n are
written as

U~t = -2(I-v)g,.t- 2vl/l,... +YI/I,..u.

U~= = -2(I-v)II;..=-2vl/l,.... +yl/l,.==. (27)

where i' ranges over 2.3 corresponding to shear modes 2 and 3. The original expressions
for the shear potentials g,. 11,.1/1, in Bueckner (1987) are presented in a complicated form.
They have been simplified by Gao (1989b) to the following:

vL.=II, = ---
. 2- v'

2(I-v)G. t +vQ1/1' = ----.--...'-..• 2-v

9J=
vL.
. '~'. III =
2-1' .

2(I-v)P-vL.t
- -,---,,_ .. ~. ,p-'._', ._~ ,

2-v 1/1.1 =
2( I - v)G.=

2-v ., (28)

where L = 2(yG.,t-xG,y). Observe that the quantities U.:,\1 U;r .. U.;", U;p U;\. arc all
even functions of :-:'. They will playa role in the 30 analysis of a half-plane crack in
Section 5.

4. TWO·DIMENSIONAL CRACK ANALYSIS

We first apply the moduli perturbation formulae to 20 crack geometries. Of particular
interest here is a 2D semi-infinite crack lying in an infinite medium with its crack tip located
in an arbitrarily-shaped nonhomogeneous zone. as shown in Fig. 3a. The materi'll olltside
the nonhomogeneous zone is assumed to be homogeneous with moduli C:;k1' The remote
stress tield is represented by the stress intensity factor K~. The stress intensity at the crack
tip is given by an unknown factor K~p. to be determined. One may interpret K~ as the
apparent stress intensity factor and K;P as the real stress intensity factor at the crack tip
shielded by the nonhomogeneous zone. Here all the quantities arc independent of the
variable: so that one may carry out the integration in the: direction in cqns (20). (21) to
wrile

(29)

and

(30)

where the polar coordinates P. cP are set up with origin at the crack tip. For each crack

SAS 27:1)-[
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mode, the solution for iTii "" 2/11:" can be extracted from the well-known crack lields (e.g.
Kanninen and Poplar, 19X5).

The 2D quantities 0:/ may be derived by integrating the 3D solutions expressed in
(26), (27). In terms of the polar variables p. //1 they are (Gao. I\)l{\)b):

tn, "" (CIX)p 1![1cos(3(jJf2)-3cos(7//J/2)1;

0:, "" (CIX)/' li![COS (34)/2) +3 cos(7(/>'2)J;

0,1, == (3C18)p Ji![sin (7(/>/2) -sin (3(1'/2)]; (31 )

0;,. == 0,\; 0;, "" O~,; 0;, = -(CIS),,') ![5sin(3t/)j2)+3sin(74>12)J (32)

0;: "" [( I - \')C /2J,,· u cos (3(p/2) ; 0;: = - [( (- \'lC/21 ,,-I'! sin (34)/2); (33)

(the rest of the components 0:/",,0), where C == l,f2( 1- \')(2n) I!]. The mode I results
(31) are in agreement with those used by Hutchinson (1987).

The integrands ofeqns (29), (30) behave as I' .. I when I' .... x,. This leads to logarithmic
singularity unless C:;kl = C;,.,. which shows that the perturbation formulae cannot be
directly used for the given primary problem shown in Fig. 3a. One may, however. construct
the solution to the prim,lry problem via two auxiliary problems A and B shown in Figs
3b,c. Auxiliary problem A involves an infinite strip with a centered semi-infinite crack. A
simple energy argument or application of i-integral gives the exact solution

(34)

(no summation on 'X). Auxiliary problem B is immediately solved using the first-order
formula (29) or (30). The solution to the primary problem is then constructed as
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(3S)

where the first bracketed term on the right-hand side denotes the solution to auxiliary
problem A and the second bracketed term denotes the solution to B. Decomposition (3S)
may be justified by considering the auxiliary problem B with a sufficiently large strip width
h. Letting R be the characteristic length of the nonhomogeneous zone R(O), one may
identify the following three regions with ditferent stress intensities: (i) region R » p -+ 0
with intensity factor K~I'; (ii) region h »p » R with K~'; (iii) region p »h with K:. Then
by an argument similar to that of the small-scale yielding in fracture mechanics, decompo­
sition (5) follows from the fact that

(
K~I'\ _ K~I'

K~}B - K~ .
(35')

The approximation signs ~ can be made exact by having the strip width h (a virtual concept)
become infinitely large.

For most engineering and geological materials, Poisson's ratio varies only slightly
(I' = 1/4 - 1/3). If we neglect the variation in Poisson's ratio, the solution to auxiliary
problem A is

(36)

Applying the perturbation formula (29) to auxiliary problem R, and using (3 \) -(33) and
the well-known standard crack liclds, it is messy but straightforward to derive the Iinal
solutions to the primary problem of Fig. 3a as

where 1,(4» and J,(I/J) are given by

I
I, = ------- [II cos IP + 8 cos 24) - 3 cos 31p - 161'(cos IP + cos 24>))

M( I -I')n

I
/! = [IS cos 1/) - S cos 24> + 9 cos 31p - 161'(cos IP - cos 24»)

64( 1- I')n

I/, = cos (I,.. 4n I'

I
J 1 = 3-" I [S+4coslp-cos24>-8I'(I+cosl/J»)

_( -I')n

I
J~ =---~- [9-4 cos IP+ 3 cos 24> -81'( I -cos Ip»)

32( I - I')n

I
J, = 4n' (38)
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Fig. 4. (a) A semi-infinitc crack penctrating a circular inclusion with varying shcar modulus Ill/'. r/J).
(h) Comparison of thc perturbation results and thc ellact solution for a modc 3 crack whcn ji(p. (/J)

is constant.

It may be verified that [.(cjJ) and J.(cjJ) are related by

[,(ep> = J~(cjJ) sin cjJ+J.(4) cos cjJ. (39)

The above allow one to determine the stress intensity factor K~P for an arbitrarily-varying
shear modulus it = Ji( p. ef» within un arbitrary region I' = R (ep> surrounding the crack tip.
The mode I part of the solutions in (37)(38) is consistent with a less general result given
by Hutchinson (1987). who treated the speciul case where the nonhomogeneous zone is
symmetric with respect to the crack tip. i.e. where R(IP> is even in IP.

Similarly. application of the .lIternative perturbation formula (30) results in

which is obviously equivalent to (37) within first order.

Spccial casc: circular "o"homogel/cous rel/io" al a crack lip
If the nonhomogeneous region is circular. i.e. R (cjJ) = R as shown in Fig. 4a. the

perturbation formulae simplify to

and

J
-~

K~P Jt • Rti(p. If» - Jd.(cjJ) Jt O- Jt •
-""70 = o(l-f f -----. -··-dpdcjJ- --f J,(cjJ)COSIPdcjJ)
K , Jt . • 11 Jt II Jt .•

(41 )

K,~: = ~(I-f' fRii(~·cjJ)-JlJ·(cjJ)dPdcjJ_JlO-;;Jlf· J.(cjJ)COScjJdc/J) (42)
K, './;0 -. 11 Jl(P. c/J) P Jt-.
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for arbitrarily-varying shear modulus ji(p. 4» within the circle p = R.
For the special case of a mode 3 crack penetrating a circular inclusion with constant

shear modulus ji(p.4» = /-L. an exact solution exists which is simply (e.g. Steif. 1987)

In this case. both perturbation formulae (41). (42) predict

K"P/K'O = /'1 1'1°
3, -' "",t·

(43)

(44)

A comparison between (43) and (44) via a plot in Fig. 4b shows that the first-order-accurate
perturbation solutions give reasonable results over a substantial range of difference in
moduli. Also. note that although the perturbation formulae are associated with potential
energy bounds of the nonhomogeneous body (Appendix). they do not provide bounds for
estimating the stress intensity factors. In principle. one may choose either one of (37). (40)
in application. In practical terms. it is often more convenient to usc formula (40) when the
crack tip modulus JI is substantially decreased from JIo since (37) involves JI in the denomi­
nator. which results in larger error than (40).

For mode I and mode 2 cracks penetrating a circular inclusion with constant modulus
JI. it follows from (42) that

(45)

It may easily he verified that these results are consistent. within first-order accuracy. with
the asymptotic results of Hutchinson (19X7) and Wu (19XS). Curiously. the present formulae
in the form of (45) arc in close agreement with the modified formulae devised by Hutchinson
[see elln (/\ IS) of Hutchinson. 1987] by lilling the ex,lct numerical results. Hutchinson's
results have been claimed to agree with the numerical analysis of Steil' (1987) on cracks
penetrating a circular inclusion. We do not go into more detail here.

It is also interesting to observe that for a circular region with axisymmetric. radially
varying moduli 11 = J1(p). the perturbation result K~P as calculated from (41) or (42)
depends only on the crack tip modulus JI = ji(O), because the integral term involving /,(4))
vanishes. This suggests that the profile of radially changing moduli within a circular
nonhomogeneous region docs not affect the crack-tip stress intensity factors. Hence. a
circular region with radially-varying moduli can be treated as an inclusion with constant
moduli. as observed by Steil' (1987) from his numerical result for a mode 3 crack.

Sinllsoie/ally-mryin9 sllt'ar moe/II/lis
When cracks ,ldv,lnce in a material with nonhomogeneous material constants. the

crack-tip stress intensity factors change with position in response to the moduli variation.
Consider a crack in an inlinite strip with height 211 (Fig. Sa). Assume that the shear modulus
varies sinusoidally in the x direction as

Il \ 2n:x
J1 = JI + Jt' cos -;--.,. (46)

When the crack advances along the x axis. the crack tip is located at a position x = a. as
shown in Fig. Sa. Substituting (46) into the general formula (40). taking R(cP) = II/Isin 4>1,
simplifying the integration with respect to 4>. and keeping only the first-order terms. one
finds that the stress intensity factor at the crack tip behaves as
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Fig. 5. (a) A cral.:k in an infinite strip with sinusoiuillly·varying shear modulus. (0) Plot for 9 ,(11/).)
tI, = I) that appears in the mode .1 crack solution.

..\ [ ? .., ]"'0 JI. _lW •. _lW
l\.:P/I\, = 1+"0 /,(h/).)cos,- +.lI,(h/,..) Sin , •

_II ,.. ,..
(47)

where

I"J. (1M [ (21th )J/:(It/i) = I+4/, I -cos . cot rP dIp
o cos I/' A.

. I" JAI/» . (21th )!/,(h/,..) =4 .. .1. Sin 1 cot IP dIp.
o cos If' /.

(4H)

The functions J,(IjJ) arc those presented in (3S). For long-wavelength modulus variations
when It/). « I, it is easily seen that/~ -+ I. g, .... () so that

ItA 21td
t'''P/A'O - I + .. cos ._ ...-
1\., > - ? 0 .'_II ,..

(49)

The stress intensity factors arc in phase with the shear modulus variation. This case is of
intaest in studying cr.tck behavior in a sandwiched layer with slowly changing moduli.

The other limiting case. h/). - 'x.,. is of more practical in1erest, that is. when the strip
height approaches inlini1y or equivalently the modulus wavelength approaches zero. It is
found tha1/:(h/).). 9,(h/).) quickly approach their limiting valuesj:(oo). Y.(t'fJ) once h;;'
exceeds 0.5. indicating that the strip size docs not playa role in the crack-tip stress intensity
factors once the wavelength of the shear modulus is smaller than twice the strip height.
Only for substantially long wavelengths h/), « I is K~'P sensitive to the strip size. We have
plotted the function !/I(h/i.) in Fig. 5b to demonstrate the behavior typical ofj~ and .l/•• The
limiting values /:C::c). Y.( X;) are found to be

The above gives the crack bchavior in an unbounded medium with sinusoidally-varying
modulus in tcrms of the homogeneous crack solution K~. Therefore.
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the 1,1\:011 shear llIodulus prolilc as a function llf thc crack tip position (/.
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JI" ( '21CtI . 21ClJ)I +., I) cos , + Sin ~-.' - .
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(51 )

H~r~ I\~ is int~rpret~d as th~ apparent stress intensity factor solution wh~n the medium is
treat~d as being homogeneous with shear modulus ItO. We have plotted in Fig. 6 the
variations of I\~P with crack tip position along the.\" axis at x = II against the local modulus
variation pralik. In Fig. 6, the value of 1/1!It I) is taken as 0.5 while Poisson's ratio is taken
as 0.25. Note that the stn:ss intensity factor v'lriation is not in phase with the modulus
vari.ttion, in contrast to the case when hi;. -.0 where K~P are completely in phase with {l.
In the present case II';. ->T.J, the mode I stress intensity factor suffers a phase shift 01'26.6',
whik the sh~ar cracks sulfer a phase shift of 45. In the case of mixed mod~ cracking, the
relative amount ofeach crack mode will be slightly alf~cted by the shear modulus variation.
The perturbation amplitude of K~P/K~ due to the modulus variation is largest for mod~ I
cracks and smallest for mod~ 2 cracks.

The ahove result for the sinusoidal modulus variation can be used to construct general
solutions for arbitrary modulus variation in the x direction via Fourier transform analysis.
Let the shear modulus be written as

If"ji(x) = ItO + a(w) cos (W.\") +h(w) sin (w.\") dw,
1t n

(52)

where 11° is the reference modulus and a(w), h(w) arc the Fourier cosine and sine transforms
defined by
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jOe< fX
a(L:J) = -e< (jl(x)-tl°]cos (wx) dx. b(L:J) = -x ~(x)sin(wx)dx. (53 )

The reference modulus J.l 0 is chosen so that la(w)I/J.l°. jb(w)liJ.l°« I; it may. for example.
be simply chosen as the mean value of ~(x).

The following integral result can be easily proved by Cauchy's integral theorem;

f
x e,wl

PV -- dt = 7Ci e""a.
- x t-a

where" Pv.. denotes principal value in the Cauchy sense. so that

fx cos wt .
n' --dt = -7C SIO wa.

_ e< t-a fTO sin wt
PV -- dt = 7C cos wa.

_;(; t-a
(54)

The perturbation solutions of (51). the integral representation (54) and the Fourier
expression (52) allow one to write the mode I stress intensity factor variation due to
arbitrary modulus fi(x) as

h"r (1-41') [ JC
_,_~o= I+-~---'i 2 a(w)coswa+h(m)sinwadw
1\1 8Tr(I-v)/1 °

I 'f c, ,lc

a(w) cos wx +hew) sin wx dw ]
- ·PI-' " dx

Tr 'C x-a

(3-41') [ I) I fJ. fi(l) ]= 1+-- 2j'i(a) - 2/1 -- PV dt .
B( I - V)/II) Tr., c. t - a

Hence. it is straightforward to construct the geneml solutions for all crack modes as

K1)'P(a) (3 -4v) [ 0 I f-r- ji(t) ]
--0-=1+ ° 2ji(a)-2J.l--PV -d/

K) 8(I-v)J.l Tr -xt-a

KI~P(a) I [ 0 I fX f'i(t) ],--- = 1+ 0 2~(a)-2J.l -(3-41')-PV ----dt
K~ 8(1 - V)/I O

Tr· x t - a

(55)

(56)

for any modulus variation I/(X) in the direction x of cnlek propag'ltion. The general
solutions of (56) may be directly derived from the perturbation formulae (37). (38), taking
R«(/J) = Iz/Isin 1>1. We leave this to the interested readers for verification.

The case is trivial when the shear modulus varies only in the direction perpendicular
to the crack plane. i.e. II = fi(y). Application of the perturbation formulae (37). (38)
immediately shows that

Here lin and K~ represent the apparent values of the shear modulus and stress intensity
f~lctors. while II and K~·r are the corresponding values at the crack tip. When li(y) is an
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y

Fig. 7. A half-plane crack in a medium with sinusoidally-varying modulus along the crack front.
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even function ofy. i.e. when the modulus variation is symmetric about the crack plane. the
above perturbation solution becomes exact. as may be verified by a direct energy argument
or application of J-integral. However. for general. asymmetric modulus variation. an
apparently mode I loading at remote field may induce a mixed mode loading at the crack
tip. Such mode coupling. as suggested by our first-order perturbation result. must be of at
least second order in the modulus variation. It seems necessary to verify the perturbation
result for a generally varying modulus in the y direction via ,1 numerical scheme. but we do
not pursue the details here.

5. Til REE-DI M E:"SIONA L ,W(>L1CATlON

By the unified perturbation procedure given in eqns (20). (21). the 3D crack problems
in nonhomogeneous materials can be solved in the same manner as the 2D problems
disl:usscd in the h1st section. For 3D application we consider a half-plane cral:k front along
the: axis (Fig. 7) with the shear modulus varying sinusoidally along the front as

21t:
ji (:) = JI/l + Jt" cos )_ . (57)

The present problem is of interest for the study ofearthquake faulting processes that involve
heterogeneous zones with varying shear modulus along the fault trace.

To solve the above problem, we first consider the strip-crack problem shown in Fig.
5a with the shear modulus now varying in the: direction. The solution to the original
problem in Fig. 7 is obtained by letting the strip height II approach infinity. Note that the
stress intensity factors K~P = K~P(:') vary along the crack front with the observation
position :'. One may usc the perturbation formula (21) to determine K~P(:') in terms of
the apparent stress intensity factor K~ at infinity.

The strip problem is solved in the same manner as in deriving (37), (38) for the 2D
'1pplications. In the 3D analysis the reference modulus J.! = jl(=') also varies with the
observation point :'. It can be shown that

( fn 1101'11I'1>1 f~ -() -( ') )('"P(-')=J~-(7)~'i"li (,1)_ _ Jt..: -.J.!: • U· d-d d'l.
1'0, _ JI - IJI 1'0, (1'1 'II' - I' (I'

n /l -. T. JI
(58)

where a'l = a,/p, c/J) may be extracted from the well-known crack tip stress fields. Sub­
stituting (57) into (58). and observing that the relevant components of U~i (e.g. U~... U~"

U:,.) are all even functions of (:-:'). one may show that the solution to the strip-crack
problem can be written as

(59)
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(60)

In writing eqn (60), we have made the variable transformations 2n:(: -.::') i. =:. 2n:p/i. = ji
and used the properties that alj u~ is a homogeneous function in p.: -:' ofdegree - 3. The
functions fIl, = fIl,(hj}.) can be then computed from the 3D weight function solutions given
in (26)-(28). The integral in (60) has a finite limit when hii. -> y;, which leads to the solution
to the 3D nonhomogeneous crack problem of Fig. 7,

(61 )

The nbove limiting values of fII, depend only on Poisson's ratio \', which is in fact obvious
from a simple dimensional analysis. Numerical integration may be carried out to compute
fIl, once v is given. Our comput'llion for the case \' == 0.25 indicates th.1t

(62)

for ,Ill arbitrarily-varying motlulus in thc : direction, i.e. ji = Iii:). Using a Fouricr trans­
form ,ulalysis simibr to that in Section 4 1e,Ids to the following geneml formula to cnkulate
the stress intensity factors

I'I,'P( •• ' )/,.~ = I 1/1, "[ ., IIIn n. +..,,, /t(: ) -It •
-It

(63)

where It" is simply the l11e,lI1 value of ji.

Il is interesting to note from (63) that the crack-tip stress intensity fnctors K~"(:') only
depend on the locnl modulus at the observation point :'. This suggests that a slight change
of moduli such as set:ond-phase inclusions along the crack front will only have very localized
ell\:cts on the: stress intensity lllctors.

6. DISCUSSION

We: have presented a unified moduli-perturbation proccdure for determining the first­
order-at:curate solutions for cracks in a nonhomogencous medium. Recent developments in
thc BuccknerRice weight function theory in thc 3D regime have permitted us to compute
thc stress intensity factors ,lIong a 3D crack front via the pe:rturbation method. without
having to solve the complicatcd boundary value problem. It is shown that although the
perturbation formulac arc associated with the potential energy bounds of nonhomogeneous
materials. the:y generally do not givc bounds for estimating the stress intensity factors.
Applications h.wc been madc to study semi-infinite craek problems in both 2D and 3D
configurations. Comparisons with a few exact solutions available have indicated that the
perturbation results arc valid over a substantial range of moduli variation.

The prcsent pcrturbation 'llgorithm can be extended to study many other problems in
nonhomogeneous matcrials. Some of them arc listed below.

(a) For reinforced composites, one can use the perturbation algorithm to calculate the
interaction bctwecn thc microcracks in the matrix with second phasc fibers or inclusions.
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(b) For the analysis of crack growth in composite materials. one can use the per­
turbation procedure to compute the effects of inclusions or fibers on a major macroscopic
crack. For example. it is of interest to study the influence lone of an inclusion within which
a crack tip is sufficiently deflected toward the inclusion to cause the so called "crack
trapping" process. In the trapping process the crack front advance is blocked. at least
temporarily. by a tough inclusion particle. This has been identified as a toughening mech­
anism for reinforced composites.

(c) Of geological interest. one model for stressing along fault zones involves a slipping
shear crack front at the seismogenic zone penetrating upward from depth to cause major
earthquakes along tectonic plate boundaries. The geological faults often involve non­
homogeneous zones both along the fault trace and depthwise toward lower portions of the
mantle. The perturbation method may open a new channel to study these complex geological
problems.

(d) The perturbation method can be also used to assess dislocation interactions with
inclusions or arbitrary nonhomogeneous materials. Barnett (1972) has studied a screw
dislocation in a nonhomogeneous material with a smoothly varying shear modulus. Gen­
erally speaking. very little analytical work is available in this area. The perturbation algo­
rithm may be extended. in the spirit of eqn (15) of the text. to address more complicated
issues such as arbitrary dislocation loops interacting with arbitrarily-varying moduli.

It is equally import.tnt to note the limitations of the lirst-order perturbations algorithm:

(a) The perturbation procedure in its present form may not be applicable when the
crack front intersects an interf~tce hetween dissimilar materiuls, in that un interfacial crack
tip generally involves stress singularities different from that of homogeneous cracks, thus
leading to singular perturbations. This problem, however, may be overcome by changing
the rererem:e solutions from those of.t homogeneous l:r.tl:k to those of an interface crack
with suflkiently simple moduli v.triation. As'lI1 example. suppose that one wishes to analyze
a crack lying along an interfal:e between two drastically dissirnil.tr m.lterials, with the further
l:omplication that both materials arc weakly nonhomogeneous. Obviously one cannot use
a homogeneous body as the rclerenl:e for perturbation, but it is possible to l:hoose the
rclerem:e as an interf'Ke l:ral:k between two materials e<ll:h having a constant modulus. The
philosophy at play here l:an be summarized as: l:hoose .t proper referenl:e body (not
nel:essarily homogeneous) so that the imposed perturbation docs not "perturb" the nature
of the stress singularity at the eral:k front location of interest.

(b) For cases where there are drastic variations in material moduli. the first-order­
aCl:urate perturbation prol:edure might cause significant error in estimating the stress
intensity flu;tors. In principle, one may l:onstruct a multi-step perturbation procedure, in
the spirit of the inl:remental cral:k front perturbation procedure outlined in Ril:e (1989). to
form a procedure in whil:h the weight fum:tion field and the full displacement field arc all
updated by (l2), (IS) at each perturbation increment. However, in view of the heavy
l:omputations that would be involved in this foreseen procedure. it seems that a more
cllkient finite element procedure can be devised. The author suspects that the basic concept
underneath the present perturbation prol:cdun:. namely. representing thc material non­
homogeneity by an cllectivc forl:e lield [sec C4ns (\O). (Ill] can be used to devise a finite
clement prol:edure in which the nonhomogeneous cral:ked body is treated as a homogeneous
one with a crack interal:ting with effective body forces and surface tractions.
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APPENDIX: PERTURBATION FORMULAE VS ENERGY 1l0UNDS

For a stressed. hOlllogencous body n. thc potential energy and the complementary cnergy arc givcn by

'['(a) ~J" S"A/tr"rrud"-J" lI,fI,rr.,d.·/.
- u 'UJ

(All

Hcre ,'n,. ,1n.1 arc the respective portions along the boundary where the tr;lelions Of displa.:ements arc prescribed.
If II, and a" arc true solutions to the c1astkity problcm.

'!I(u) + '['(II) '" O.

The same expressions may be applied to a nonhomogeneous body if all the quantities arc superposed with a tilde.
The following energy bound theorem will be used. When a homogeneous body is perturbed to a non­

homogeneous one by changing its moduli by JC,jH{X). the change in Ihe potential energy will be bounded by (e.g.
Walpolc. 1'.170)

(A.1)

where

and

.... Ii' . .,II" = - ~ ,IS""lx)a"(xJtr,,lx) I·.
- "

(A-I)

(A5)

II is important to note that ,i.I'· anJ ,i'I'" Me fully determined by the unperturbed. homogeneous solulions. The
above cnergy bound theorem leads to Ilill's ( 11)6.\) "strenglhening theorem" whkh states th;11 the potential energy
always increases when a materi;d is doped with stiffer inclusions. i.e. when ,iC"H (-,5S",,) is positive definite.
Equally. this also leads 10 a "weakening theorem" that the energy always decreases when a material is doped with
softer inclusion particles. in which case ,leu" (-,55.,.,) is negative definite.

The .:ncrgy I'>ound Ih.:orel1l (A.') can be pwveJ as roll"ws. From the governing equations (I). (2) in the le,t
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for the homogeneous solutions (u,. c'!' 17,,) and (9) for the nonhomogeneous lield (Ii,. £". a,,). one may conclude
that (u,. c,. ('".,cd forms a kinematically admissible solution set for the nonhomogeneous body since all the
kinematic conditions are met. On the other hand. the set (17". 5'"H17.,1 is only statically admissible since it sausties
the equilibrium but not the compatibility equations. It follows from the classical minimum energy principles that

(A6)

Howe\er. It is rather straightforward to show that

(A7)

Ct1mbining eqns (A6) and (A7), one reaches the conclusion that

(A8)

which completes the proof of the energy bound theorem (A3).
Furthermore. it is elementary to show that ,lll>· is equal to ,i<I>•• within lirst order in 'lC"I" Thus. ';11>•• ,lll>··

also give the first-order variation in the total potential energy associated with the moduli perturbation ';C"H(X),
Without realizing the energy bound theorem (A3). Eshelby (1970) proved the same result via a different approach.
According to Eshelby. an analogous result referred to as the Hellman-Feynman theorem also exists in the theory
ofquantum physics. The presentlirst-order bound theorem has significance in estimating potential energy changes
due to phase transformations. We do not pursue the details of that aspect here.

Now assume that the body contains a 3D planar crack. When the crack front CF is perturbed from its
original position to a neighboring position by an amount ';a(.v) normal to itself in the crack plane. where ,la(.,) is
an arbitrary function of the crack front position .•. the potential energy is changed by

(A9)

where :~(s) is the local energy release rate (sec eqn (5) of the te~tJ. Therefore. when a homogeneous body is
imposed with intinitesimal perturbations ,la(s) and ,je,l/Ix). the total energy change is ,j'lI· +,)'11'. Wriling

(AIO)

to identify the perturbation magnitudes ,ja. ,lC under li:oled profile fum:tions 9(.1') ami I'",,(x). the tolal energy
change is expresscd as

(All)

whcre

(AI2)

and

(AI3)

The cocllkients G. F· measure the rates at which the total potenti;t! energy varies with the perturbations ,la. ')C.
corrcsponding to the thernlOdynami..: forces conjugate to the crack advance (with profile 9(.1')1 and the moduli
change [proportionaltol',,"(xll.

The potential energy ,T'(ii) depends only on the tinal clastic slate which is a function of variabks such as the
linal cra..:k pOSitioll and Ihe tinal moduli fun..:tiun t",,; it should be independent of the path taken by the
perturbation pro..:ess. Therefore the right-hand side of eqn (A II) is a perfect dilTen:ntial so that the eoellicients (j

and F" must salisfy the :l.la:olwell r~'Ciprocal relation

which by (AI~). (AI3) leads to

,"G ,"/-,"
,'(' '"l/

(AI4)

(AI5)

At this stage it is necess;lry to usc an important property of the 3D weight functions h.,(x: .1'). Rice (1985) has
shown that. when the crack front CF is perturbed by ,ja(s) = g(s)';a. the displacement u varies under fi:olcd loading
conditions according to

cu. "1..., = _ A,ph.. (x; s)Kp(s)g(s) ds.
(U CF

(A16)
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Substituting (A16llnlO (AI5) results in

(A17)

Equation (A 17) must be valid for an arbitrary cra<:k perturbation profile function g(s), which requires that the
integrand part within the curly bra<:kets vanishes. i.e.

(AISl

This equation. when multiplied by ,iC and replacing P ..,(x),iC by <5C",,(x). leads to the rederivation of eqn (12)
of the h:.\t. It is thcn dcar that eqn (12) is derived from the upper bound <5<1>. for the energy change due to ,iC"".

Similarly. if ,'ne uses ,i<1>" instead of ,i<l>· in .:onstru<:ting the recipw<:aI relation (A 1.1) (i.e. F· IS replaced
by F··), one <:an fllllow similar steps leading to eqn (AllI) to rederive eqn (14) of the tex!. Therefore. the
perturbation formulae (12). (14) are in fa<:t associated with the upper and lower first-order bounds for the potential
energy change. However. these perturbation formulae do not provide bounds for estimating the stress intensity
fm:lors. as shown in Se<:tion 4 of the tex!.


